The non-isomorphism of certain continuous rings.

Ann. of Math. (2) 67 1958 485–496

This manuscript, one of several written by von Neumann in 1935–37, is published now, after his death. The paper begins with the following introductory remarks by Irving Kaplansky.

"By a continuous geometry \(L \) we mean here an irreducible one, in the infinite case. There exists a unique regular ring \(R \) coordinatizing \(L \), and \(R \) is called a continuous ring. It is a simple ring with unit, and its center is a field \(Z \). Starting with an arbitrary field \(Z \), von Neumann had given a purely algebraic construction of a continuous geometry \(L_\infty(\mathbb{Z}) \) whose coordinatizing continuous ring \(Z_\infty \) has center \(Z \). Now in case \(Z \) is the field of complex numbers, there is another way to get a continuous ring with center \(Z \), namely from a factor \(M \) of type II\(_1\). The corresponding continuous ring \(U \) is obtained by adjoining to \(M \) suitable unbounded operators. In this paper von Neumann shows that the algebraic \(Z_\infty \) is never isomorphic to a ring \(U \) derived from a factor of type II\(_1\)."

Let \(R \) be any continuous ring with centre \(Z \) consisting of all complex numbers, e.g., \(Z_\infty \) or \(U \). A family of ring elements \(s_{ijl} \), \(l = 0, 1, 2, \ldots, i, j = 1, \ldots, n_l \) (with \(n_0 = 1 \), \(n_l = n_{l-1}q_l \) for \(l > 0 \) and each \(q_l \) an integer more than 1), is called a continuous set of matrix units if (i) for each fixed \(l \) the \(s_{ijl} \) are a set of matrix units, in particular \(s_{11l} = 1 \), and (ii) \(s_{ijl}^{-1} = \sum t s_{(i-1)q_l+t,(j-1)q_l+t} \). Let \(\gamma \) denote the set of all finite linear combinations, with coefficients in \(Z \), of the \(s_{ijl} \).

Von Neumann calls a ring element \(\pi \) continuous with respect to the \(s_{ijl} \) if for each \(l \) there are distinct rational numbers \(\rho_{il} \), \(i = 1, \ldots, n_l \), such that

\[
 s_{1il}(\pi + \rho_{il}s_{11l})s_{1il}^{-1} = s_{ii}l\pi = \pi s_{ii}l.
\]

He proves that such an \(\pi \) has rank metric distance from every element in \(\gamma \) equal to 1 so that such an \(\pi \) cannot be in the closed set (rank metric topology) determined by \(\gamma \).

Now the definition of \(Z_\infty \) shows that for a suitable continuous set of matrix units, \(Z_\infty \) coincides with the closed set determined by \(\gamma \). Thus there is no such \(\pi \) in \(Z_\infty \) with respect to this particular continuous set of matrix units.

On the other hand, for arbitrary continuous set of matrix units in a ring \(U \) derived from a factor of type II\(_1\), von Neumann constructs an \(\pi \) which is continuous with respect to these matrix units. It follows that \(Z_\infty \) is not ring isomorphic to any such \(U \).

Typographical errors are as follows. (1) Page 486, end of line 18: replace \((\pi)\) by \((\pi)_r\). (2) Page 486, line 3 from bottom should read: “We prove next \(((\pi_1 + \rho_{il}s_{ii}l)\pi)_r; i = 1, \ldots, n_l \) \perp, where \(\perp \) indicates that the ideal is taken in \(\mathfrak{R}(s_{11l}) \).” (3) Page 486, line 2 from bottom (twice) and page 487, lines 12 (twice), 13, 15 (twice): replace “\(\pi \)” by “\(\pi_1 \)”. (4) Page 487, line 16: replace “\(\pi \)” by “\(\pi_1 \)”. (5) Page 488, line and page 489 lines 4, 5: replace “\(\mathfrak{R}(s_{11l})^n \)” by “\(\mathfrak{R} \)”.

I. Halperin

© Copyright American Mathematical Society 2018