Rings M of operators in Hilbert space are considered here. A property is purely algebraic if it can be expressed within M in terms of the algebraic operations, that is, αA, $A + B$, AB, A^* and 1 (the identity). The author establishes the algebraic character of the (α) definiteness of A (essentially $A = BB^*$), (β) bound of A (defined in terms of definiteness), (γ) strong convergence of A_n to A and (δ) weak convergence of A_n to A.

The proof of (γ) is based on the existence of subsequences of A_n which are Σ-sequences; the definition of Σ-sequences brands them as purely algebraic. The proof of (δ) depends on (γ) and on the fact that weak convergence may be characterized by means of strong convergence.

E. R. Lorch