In the paper reviewed above von Neumann obtained the distribution of \(\gamma = \sum a_i x_i^2 \), where the \(x \)'s are uniformly distributed over the sphere \(\sum x_i^2 = 1 \). The derivation made in that paper, however, depended on the assumption that \(m \) is an even integer. In the present note the author extends his results to cover the case in which \(m \) is an odd integer. He then shows how the result applies to the problem of determining the distribution of the following ratio for even values of \(n \)

\[
\frac{\sum_{i=1}^{n-1} (x_i - \bar{x})(x_{i+1} - \bar{x})}{\sum_{i=1}^{r} (x_i - \bar{x})^2},
\]

where \(x_1, \ldots, x_n \) are elements in a sample from a normal population and \(\bar{x} \) is the sample mean.

S. S. Wilks