This paper continues earlier researches on measure preserving transformations by von Neumann [Ann. of Math. (2) 33, 587–642 (1932)]. Two measure spaces, that is, spaces on certain sets of which measures are defined, are called point isomorphic if one can be transformed into the other in a 1–1 measure preserving way (neglecting a set of measure 0 in each). Two measure spaces are called set isomorphic if there is a 1–1 measure preserving transformation of the measurable sets of one into those of the other (sets of measure 0 disregarded throughout) which takes sums into sums and complements into complements. Throughout the following, “conditions of type F” will mean conditions on the fields of measurable sets of the measure spaces involved. (1) Necessary and sufficient conditions of type F are found that a measure space be point isomorphic to the unit interval (with Lebesgue measure). (2) Under hypotheses of type F, necessary and sufficient conditions are found that every set automorphism of a measure space on itself be generated by a point transformation. (3) Under hypotheses of type F, it is shown that an ergodic measure preserving transformation T, with pure point spectrum, of a measure space into itself is point isomorphic to a rotation $x \rightarrow ax$ on a compact separable Abelian group (on which measure is Haar measure). This result makes possible simple proofs of properties of measure preserving transformations. Thus it is shown that T is necessarily isomorphic to its own inverse. (4) For the group rotations of (3), metric transitivity is equivalent to regional transitivity. (5) If T is an ergodic measure preserving transformation on a metric measure space X, with the usual relations between measure and metric, and if T is isometric, or more generally, if the family $\{T^n\}$ is equicontinuous, then T has a pure point spectrum; in fact, a multiplication can be defined on X so that X becomes a compact separable Abelian group, and T becomes a rotation.

J. L. Doob