MR633764 (83g:28036a) 28D05 58F11
Veech, William A. [Veech, William Austin]
★Projective Swiss cheeses and uniquely ergodic interval exchange transformations.
Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), pp. 113–193,

Michael Keane

MR644019 (83g:28036b) 28D05 58F11
Veech, William A. [Veech, William Austin]
Gauss measures for transformations on the space of interval exchange maps.

Let \(n \geq 2 \) be integral. Let \(\pi \) be a permutation of the symbols \(\{1, \cdots, n\} \). We say that \(\pi \) is irreducible if \(\pi(\{1, \cdots, k\}) = \{1, \cdots, k\}, k \geq 1 \), implies \(k = n \). (This is not the usual definition of irreducibility.) Let \(\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n) \) be a probability vector \((\alpha_k \geq 0, \sum_{k=1}^{n} \alpha_k = 1)\). The interval exchange transformation \(T(\alpha, \pi) \) is the map from the interval \([0, 1)\) to itself defined by cutting up \([0, 1)\) into (right open, left closed) intervals of lengths \(\alpha_1, \cdots, \alpha_n \) and permuting these intervals by \(\pi \). The reviewer has shown [Math. Z. 141 (1975), 25–31; MR0357739] that if \(\pi \) is irreducible and \(\alpha \) is irrational (i.e., \(\sum_{k=1}^{n} m_k \alpha_k = m_0, m_k \) integral, implies \(m_0 = m_1 = \cdots = m_n \)), then Kronecker’s theorem is valid for \(T(\alpha, \pi) \), i.e., the \(T(\alpha, \pi) \)-orbit of any point of \([0, 1)\) is dense in \([0, 1)\), and he conjectured [Israel J. Math. 26 (1977), no. 2, 188–196; MR0435353] that for any given irreducible \(\pi \), \(T(\alpha, \pi) \) satisfies the Weyl theorem, i.e., the \(T(\alpha, \pi) \)-orbit of any point in \([0, 1)\) is uniformly distributed in \([0, 1)\), for almost all probability vectors \(\alpha \).

In the first paper the author verifies this conjecture for \(n = 4 \), and in the second paper he shows that the conjecture is true for general \(n \). To do this, he defines a group action on the set of interval exchange transformations, using the inducing construction of ergodic theory, and shows that this group action possesses a unique invariant absolutely continuous measure, which naturally decomposes into ergodic components, one for each Rauzy class of irreducible permutations. Explicit formulae for the density of this measure (for different \(n \)) are given. These papers form an important and substantial contribution to ergodic theory.

{For the entire collection in which the first paper appears see MR0633759.}

Michael Keane

© Copyright American Mathematical Society 2018