The author considers a dynamical system defined on a 2-dimensional torus \(T^2 \) by the system of differential equations

\[
\frac{dx}{dt} = A(x,y), \quad \frac{dy}{dt} = B(x,y),
\]

and possessing an invariant integral \(I(g) = \int U(x,y) \, dx \, dy \), where \(A, B \) and \(U \) are univalued, analytic periodic functions of \(x \) and \(y \) with period \(2\pi \). Here \(x \) and \(y \) are real coordinates mod \(2\pi \), \(A^2 + B^2 > 0 \), \(U > 0 \) on the whole of \(T^2 \). It is then known [Nemyckii and Stepanov, Qualitative theory of differential equations, 2nd. ed., Gostehizdat, Moscow-Leningrad, 1949; for a review of the 1st ed. see MR0029483] that there exists an analytic transformation of coordinates which transforms the system (1) into the system

\[
\frac{dx}{dt} = \frac{1}{F(x,y)}, \quad \frac{dy}{dt} = \frac{\gamma}{F(x,y)}
\]

with an integral invariant \(I(g) = \int F(x,y) \, dx \, dy \), where \(\gamma \) is a constant.

The following theorem is asserted. Theorem 1. If there exist constants \(c > 0 \) and \(h > 0 \) such that for all positive integers \(m \) and \(n \)

\[
|m - n\gamma| \geq ch^n,
\]

then there exists an analytic transformation of coordinates which transforms the system (2) into the system

\[
\frac{du}{dt} = \lambda_1, \quad \frac{dv}{dt} = \lambda_2,
\]

where \(\lambda_1, \lambda_2 \) are constants and \(\lambda_2 = \gamma \lambda_1 \) and with the integral invariant \(I(g) = K \int F \, du \, dv \). Condition (i) is fulfilled for every \(\gamma \) except for a set of Lebesgue measure zero (\(c \) and \(h \) depend on \(\gamma \)). It follows that system (1) has a pure point spectrum with analytic proper functions.

For those irrational numbers which do satisfy (i) the author states: Theorem 2. Each of the following conditions is possible for a suitable choice of \(\gamma \) and \(F(x,y) \): The system (2) can be transformed into (3) by (I) an infinitely differentiable but not analytic transformation, (II) a \(k \)-differentiable but not \((k+1)\)-differentiable transformation, (III) an everywhere-discontinuous transformation; and (IV) the system (2) cannot be transformed into (3) at all. In (I), (II) and (III) the original system (1) has a pure point spectrum but the proper functions are respectively not analytic, not \((k+1)\) differentiable and everywhere discontinuous. The conjecture is made that in (IV) the spectrum is necessarily continuous but only a considerably weaker result is proved. In all statements related to Theorem 2 the notions of analyticity, differentiability, etc. are interpreted modulo sets of Lebesgue measure zero. The method of obtaining the system (3) from (2) is obtained and discussed.

\[\text{Y. N. Dowker}\]