Let $\varphi: S^1 \to S^1$ be a C^r mapping ($r \geq 2$) of the circle $S^1 = \mathbb{R}/\mathbb{Z}$ onto itself which satisfies $|\varphi'(t)| > 1$ with the exception of a finite set of fixed points t_1, \ldots, t_r where $|\varphi'(t_i)| = 1$ holds. If for each t_i there is an integer m_i satisfying $2 \leq m_i \leq r$ and $\varphi^{(m_i)}(t_i) \neq 0$, then S^1 carries an absolutely continuous φ-invariant measure which is necessarily infinite. For this fact the C^2 smoothness of φ is necessary, since for each $\varepsilon > 0$ there are $C^{2-\varepsilon}$ mappings $\varphi: S^1 \to S^1$ with a finite absolutely continuous invariant measure.

Hans G. Bothe

© Copyright American Mathematical Society 2018