Kummer [J. Reine Angew. Math. 32, 341–359 (1846)] studied the theory of the periods in cyclotomy and was led to consider the counterpart of the Gauss sum in the cubic case, namely

\[x = 1 + 2 \sum_{\nu=1}^{(p-1)/2} \cos \left(\frac{2\pi \nu^3}{p} \right) \]

where \(p \) is a prime of the form \(6n + 1 \). This sum and the two others which extend over the two kinds of cubic non-residues modulo \(p \) are the three roots of the equation

\[x^3 - 3px - pA = 0, \]

where \(4p = A^2 + 27B^2, A \equiv 1 \pmod{3} \). An unsolved problem is that of deciding in advance for a given \(p \) whether the root (1) is the largest, middle or smallest root of (2). Kummer classified the primes \(p \) into three classes accordingly and conjectured that the frequencies of these classes are 1/2, 1/3 and 1/6 respectively. His calculations based on the first 45 primes \(p = 6n + 1 \) gave densities of .5333, .3111 and .1556.

The present note extends Kummer’s calculations to the primes less than 10,000; in all, 611 primes. The results do not bear out Kummer’s conjecture. The densities obtained are .4452, .3290 and .2258. These “seem to indicate a trend toward randomness”. On the other hand there is room for the conjecture that the ultimate densities are 4/9, 3/9 and 2/9. The calculation was made on the IAS Computer and required about 15 million multiplications.

\[\text{D. H. Lehmer} \]

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2018