Strong approximation theorems for density dependent Markov chains.

The author considers the wide variety of density-dependent Markov population models which can be expressed as the solutions of stochastic equations of the form (1) \(X_N(t) = x_0 + \sum_j N^{-1} jY_j(N \int_0^t f_j(X_N(s)) \,ds) \), where \(NX_N(t) \) and \(j \) belong to \(\mathbb{Z}^d \), the \(Y_j \) are independent Poisson processes and \(N \) is a “large” parameter representing a typical population size (see, for example, an earlier paper by the author [J. Appl. Probability 8 (1971), 344–356; MR0287609]). From the law of large numbers for \(Y_j \), equation (1) is, for large \(N \), a.s. close to the equation \(X(t) = x_0 + \int_0^t \sum_j j\langle f_j(X(s)) \,ds \), and an argument exploiting this idea shows directly that \(X_N(t) = X(t) + \varepsilon_N(t) \), where \(\sup_{0 \leq t \leq T} |\varepsilon_N(t)| = O(N^{-1/2}) \). The process \(X_N(t) \) is then compared on the same probability space with an \(N \)-dependent diffusion process \(Z_N(t) \), obtained as the solution of an equation similar to (1), but with \(B_j \) for \(Y_j \), where the \(B_j \) are independent Brownian motions with unit drift and variance. Again the two equations are compared using a.s. path by path approximations, now based on a theorem of J. Komlós, P. Major and G. Tusnády [Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 111–131; MR0375412], and it is shown that \(\sup_{0 \leq t \leq T} |X_N(t) - Z_N(t)| \) is typically of order \(\log N/N \). Finally, it is established that \(Z_N(t) = X(t) + N^{-1/2}V(t) + \varepsilon_N'(t) \), where \(\sup_{0 \leq t \leq T} |\varepsilon_N'(t)| = O(N^{-1}) \) and where \(V(t) \) is a suitably constructed version of the usual \(N \)-independent diffusion approximation to \(N^{1/2}(X_N(t) - X(t)) \). This is accomplished by comparing \(Z_N \) and \(V \) through the Itô equations which define them. The conditions imposed on the functions \(f_j \) in the statements of the various theorems are not restrictive, and yet the final conclusion, expressing \(X_N(t) \), \(0 \leq t \leq T \), as \(X(t) + N^{-1/2}V(t) \), with a path by path error which in practical situations is a.s. \(O(\log N/N) \), represents as precise a description of the diffusion approximation as one could wish to achieve.

Andrew D. Barbour

© Copyright American Mathematical Society 2018