Consider a sample of size n in which the observed values are x_1, x_2, \cdots, x_n, and let $(n - 1)\delta^2 = \sum_{i=1}^{n-1}(x_{i+1} - x_i)^2$. The authors have studied the sampling theory of δ^2 assuming the elements in the sample to have been independently drawn from a normal population with known variance σ^2. The first four moments of δ^2 are determined, and a Pearson Type VI curve is fitted to the distribution of δ^2/σ^2. The values of the constants for the fitted curves are given for $n = 5, 7, 10, 15, 20, 25, 50$ and a comparison is made in each case between the true β_2 and the $\tilde{\beta}_2$ of the fitted curve.

S. S. Wilks