A method for the numerical calculation of hydrodynamic shocks.

The main object of this paper is a practicable numerical method for computing hydrodynamic flow involving shocks. Determination of the position of these shock discontinuities is part of the initial-boundary value problem, and this fact is a formidable obstacle to actual solution of problems. As suggested before, one could overcome the difficulty by replacing the system S of equations, which is of the first order, by another system S', of second order, which takes into account the factor λ of heat conduction and the factor μ of viscosity. For $\lambda, \mu \to 0$ the system S' tends to S, and it is plausible that the solutions of S', all of which are continuous, tend in the limit to solutions of S, exhibiting the shock discontinuities in question. This remark immediately suggests numerical procedures which, however, appear rather complicated. In the present paper the authors have modified the attempt in a remarkable way. Again the system S is replaced by another system S'', of second order and having continuous solutions; but the authors observe that the system S'' can be chosen in many ways, depending on one parameter, so that in the limit as this parameter tends to zero the system S results and that the solutions of S'' tend to the solutions of S, exhibiting the proper shocks. The specific proposal in the paper is to replace in S the pressure p by an expression $p + q$, where q, containing the first derivative of the specific volume, is properly chosen. This replacement, while not having direct physical significance, lends itself to a simpler theoretical and numerical treatment than that involving heat conduction and viscosity. The paper discusses a simple special case. Furthermore, general schemes for finite difference procedures are set up and the stability of the computational procedures concerning these finite difference schemes is ascertained.

\textit{R. Courant}

\copyright\ Copyright American Mathematical Society 2018