In this paper the authors deal with abstract first- and second-order identification problems. First, the Cauchy problem

\begin{align}
\begin{cases}
 u'(t) - Au(t) = f(t)z, & t \in [0, \tau], \\
 u(0) = u_0
\end{cases}
\end{align}

is considered in a Banach space \(X \), subject to the additional information \(\Phi(u(t)) = g(t) \) for any \(t \in [0, \tau] \) and some \(\Phi \in X^* \). The unknowns are \(u \) and the continuous function \(f \). As typical when dealing with identification problems, assuming that \(\Phi(z) \neq 0 \) and applying \(\Phi \) to both sides of the differential equation in (1) allows one to make \(f \) explicit in terms of \(u \). More precisely, it turns out that \(f = Bu = \phi(u)z \) for some \(\phi \in X^* \). Replacing the expression of \(u \) in the differential equation leads to a Cauchy problem associated with the operator \(A + B \). Here, the choice of \(z \) in \(F_1 \) is crucial. Indeed, it implies that \(A + B \) is the generator of a strongly continuous semigroup and this allows the authors to prove that, for any \(u_0 \in D(A) \), \(g \in W^{2,1}((0, \tau); C) \), satisfying the compatibility condition \(\Phi(u_0) = g(0) \), the identification problem admits a unique solution \((u, f) \) with \(u \in C([0, \tau]; D(A)) \cap C^1([0, \tau]; X) \) and \(f \in C([0, \tau]; C) \).

The identification problem is also considered in the case when \(A \) is a sectorial operator, \(z \) belongs to the interpolation space \(D_A(\theta, \infty) \) and \(u_0 \in D_A(1 + \theta, \infty) \) for some \(\theta \in (0, 1) \). Depending on the smoothness of \(g \) two different existence-uniqueness results are established.

Next, the authors consider the complete second-order problem

\begin{align}
\begin{cases}
 u''(t) - Bu'(t) - Au(t) = f(t)z, & t \in [0, \tau], \\
 u(0) = u_0, & u'(0) = u_1,
\end{cases}
\end{align}

in the unknowns \((u, f) \) still subject to the condition \(\Phi(u) = g \). Here, \(X \) is a Hilbert space, \(A = -C^*C \) for some densely defined invertible operator \(C \) and \(B \) is a dissipative operator whose domain contains \(D(C) \). Assuming that \(z \in D(C) \) satisfies \(\Phi(z) \neq 0 \), \(u_0 \in D(A) \), \(u_1 \in D(C) \), \(g \) is twice continuously differentiable and the compatibility conditions are satisfied, the authors prove the existence and uniqueness of a solution \((u, f) \) to problem (2), such that \(\Phi(u) = g \), with \(u \in C^2([0, \tau]; X) \cap C([0, \tau]; D(A)) \), \(u' \in C([0, \tau]; D(B)) \), and \(f \in C([0, \tau]; C) \). Also, the case when the pair \((B, A)\) in (2) is replaced by \((2\gamma A, C - A^2)\), for some \(\gamma \in (0, 1) \), is considered when \(A \) is a sectorial operator with spectrum contained in \((-\infty, \omega)\) for some \(\omega < 0 \) and \(C \) is a suitable closed operator, whose domain contains the domain of \(A^2 \). Assuming that \((C - A)y_0 \in D_A(\theta, \infty) \) for some \(\theta \in (0, 1) \), \(y_1 \in D_A(1 + \theta, \infty) \), \(z \in D_A(\theta, \infty) \) and \(g \in C^2([0, \tau]; X) \) satisfy due compatibility conditions, the analyticity of \(A \) allows the authors to show that \(u \) is smoother than in the general case.
Several applications of the abstract results are provided to population equations, to degenerate parabolic equations, to equations arising in the theory of linear visco-elastic materials and to damped wave and plate equations.

Luca Lorenzi

References

18. Di Blasio, G., Kunisch, K., Sinestrari, E.: Mathematical models for the elastic beam

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2019