Integration of a holomorphic 1-form \(\omega \) on a Riemann surface \(X \) produces a local coordinate away from the zeros of \(\omega \) which forms part of a flat structure: any two such coordinates differ by a translation. Thus, a translation surface is a triple \((X, \omega, P)\) where \(P \subseteq X \) is a finite set (“marked points”) containing the zeros of \(\omega \). The set \(\text{Hol}(X, \omega, P) \) of holonomy vectors, the integrals of \(\omega \) along geodesics in \(X \setminus P \) joining points of \(P \), is a discrete subset of \(\mathbb{R}^2 \). Many number-theoretical results for \(\mathbb{Z}^2 \) can be generalized to \(\text{Hol}(X, \omega, P) \); this paper is particularly concerned with the e-Minkowski constant (“e” for “elliptic”) for Veech surfaces.

The so-called “Minkowski’s First Theorem” states that if \(C \subseteq \mathbb{R}^2 \) is convex and symmetric with respect to the origin and contains no points of \(\mathbb{Z}^2 \setminus \{0\} \), then \(\text{area}(C) < 4 \). Motivated by this, the Minkowski constant \(M(X, \omega, P) \) of a translation surface is defined to be \(\frac{1}{4} \sup \text{area}(C) \), where \(C \) varies over the bounded, convex regions symmetric with respect to the origin and disjoint from the holonomy vectors. The e-Minkowski constant \(M^e(X, \omega, P) \) is obtained by requiring \(C \) also to be the interior of an ellipse.

The Veech group \(\Gamma(X, \omega, P) \subseteq \text{SL}(2, \mathbb{R}) \) is the collection of differentials of the affine (with respect to \(\omega \)) automorphisms of \(X \). A Veech surface (or lattice surface) is a translation surface for which the Veech group is a lattice. The main result is that for Veech surfaces, \(M^e(X, \omega, P) \) is equal to \(\frac{1}{4} \) the maximum area of the “strong support ellipses”, which are ellipses centered at the origin with boundary meeting \(\text{Hol}(X, \omega, P) \) in at least 6 points, but having no interior holonomy vectors.

The elements of the proof of this result are used to give an algorithm for calculating the e-Minkowski constant \(M^e \). This involves an algorithm for drawing the spine of the translation surface, which is a subset of \(\mathbb{R}^2 \) obtained by moving the shortest holonomy vectors via the natural action of \(\text{SL}(2, \mathbb{R}) \) on translation structures, and it is a tree whose edges are hyperbolic geodesics and which is invariant under the action of \(\Gamma(X, \omega, P) \subseteq \text{SL}(2, \mathbb{R}) \). A series of subsidiary results are required to finitize those steps of the spine algorithm which require taking maxima or minima over \(\text{Hol}(X, \omega, P) \).

Some examples of \(M^e \) are calculated, including the flat torus marked by a single point, and translation surfaces obtained by identifying parallel edges of a regular \(n \)-gon (\(n \) even) or two copies of the \(n \)-gon (\(n \) odd), \(n \geq 5 \). Most of the corresponding Veech groups are non-arithmetic.

R. Michael Porter

References

and P. Sarnak; American Mathematical Society, Providence, RI, 1997) 165–189. MR1429199

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2018