Stepin, A. M. [Stepin, Anatoli˘ı Mikha˘ılovich]

Dynamical systems on homogeneous spaces of semisimple Lie groups. (Russian)

Let G be a Lie group, Γ a closed subgroup of G and μ a G-invariant measure on G/Γ with $\mu(G/\Gamma) = 1$. An element $g \in G$ induces a transformation $T(g)$ of G/Γ by $T(g)(g_0\Gamma) = gg_0\Gamma$ for $g_0 \in G$. Let U be the unitary representation of G on the representation space $L^2(G/\Gamma, \mu)$ defined by $(U(g)f)(x) = f(g^{-1}x)$ for $f \in L^2(G/\Gamma, \mu)$, $g \in G$ and $x \in G/\Gamma$.

Let g be the Lie algebra of G and $\exp : g \rightarrow G$ the exponential map. An element $x \in g$ is said to be ergodic if the flow $\{T(\exp tx)\}$ on G/Γ is ergodic with respect to the measure μ. Most of this paper is devoted to a proof of the following theorem: Let G be a connected semisimple Lie group and Γ a closed subgroup of G with finite volume. If $x \in g$ is ergodic, then the flow $\{T(\exp tx)\}$ has countably multiple Lebesgue spectrum. In the proof of the above theorem, the author defines the notion of expanding [contracting] horospheric subgroup $H^+ [H^-]$ of G with respect to $x \in g$, and gives a property of H^\pm.

Finally, the author defines a K-element $x \in g$ by requiring that for every Γ for which G/Γ has finite volume, $\{T(\exp tx)\}$ is a K-flow on G/Γ, and proves the following result: Let G be semi-simple and let $g = \sum g_i$ be the direct sum decomposition into simple ideals g_i of g; then $x = \sum x_i$ with $x_i \in g_i$ is a K-element if and only if the eigenvalues of $\text{ad} x_i$ have nonzero real parts.

A. Morimoto

© Copyright American Mathematical Society 2018