On the hyperbolicity of minimizers for 1D random Lagrangian systems. (English summary)

In this paper, the authors study minimizers of a random Lagrangian functional of the form
\[A(\gamma) := \frac{1}{2} \int_s^t (\gamma'(\tau) - b)^2 d\tau + F(\gamma(\cdot), \gamma'(\cdot); s, t, \omega), \]
where \(\gamma: [s, t] \to S^1 \) is absolutely continuous, \(b \in \mathbb{R} \) is given, and \(F(\cdot, \cdot; \cdot, \cdot, \omega) \) is a random functional satisfying the so-called separation property. The authors define a separation property and then construct functionals satisfying this property. For a given \(x \in S^1 \), \([s, t] \subset \mathbb{R} \), and \(\psi: S^1 \to \mathbb{R} \), \(\gamma^x_{s, t, \psi}: [s, t] \to S^1 \) denotes a minimizer of \(A(\gamma) + \psi(\gamma(s)) \) over all absolutely continuous curves \(\gamma: [s, t] \to S^1 \) such that \(\gamma(t) = x \). For \(-\infty < r < s \leq t < \infty \), let
\[\Omega_{r, s, t, \psi} := \{ \gamma^x_{r, t, \psi}(s): x \in S^1 \}. \]

The sets \(\Omega_{r, s, t, \psi} \) are closed in \(S^1 \) and \(\Omega_{r, s, t, \psi} \subseteq \Omega_{r, s, t, \psi} \) when \(s \leq t_1 \leq t_2 \). For a given closed subset \(Z \subset S^1 \), let \(m(Z) \) denote the maximal length of a connected component of \(S^1 \setminus Z \), and let \(d(Z) := 1 - m(Z) \). The main result of the paper is:

Theorem. If the separation property for the functional \(F(\cdot; \cdot; \cdot, \cdot, \omega) \) holds, then there exist constants \(\lambda, B > 0 \) such that
\[E(d(\Omega_{r, s, t, \psi})) \leq B \exp(-\lambda(t - s)) \]
for all \(-\infty < r < s \leq t < \infty \), where \(E(\cdot) \) denotes the expectation.

References

Note: This list, extracted from the PDF form of the original paper, may contain data conversion errors, almost all limited to the mathematical expressions.

© Copyright American Mathematical Society 2018