Let T be an automorphism of a Lebesgue space (X, μ), Γ a topological group, and $\Gamma(X)$ the set of measurable functions from X to Γ. The transformation T_f of $X \times \Gamma$ defined by $T_f(x, y) = (Tx, f(x)y)$ is said to be a Γ-extension of T. If T is ergodic and $\Gamma = \mathbb{Z}_2$ it is shown that an ergodic Γ-extension T_f always exists. This is equivalent to the equation $\phi(Tx) = f(x)\phi(x)$ having no solution ϕ in $\Gamma(X)$, and answers in the negative a question of P. R. Halmos [Lectures on ergodic theory, Math. Soc. Japan, 1956; MR0097489; reprint, Chelsea, New York, 1960; MR0111817]. The author next considers groups of automorphisms of Lebesgue spaces. If P and Q are countable groups of automorphisms of X that are trajectory equivalent, then there is a one-to-one correspondence between the cohomology groups $H^1(P, \Gamma(X))$ and $H^1(Q, \Gamma(X))$, which is a group isomorphism if Γ is commutative. As a corollary, the cohomology groups of all countable approximately finite [H. A. Dye, Amer. J. Math. 81 (1959), 119–159; MR0131516] ergodic groups of automorphisms are isomorphic.

{This article has appeared in English translation [Functional Anal. Appl. 5 (1971), 167–168].}