The paper studies dynamics of a model which extends the Lotka-Volterra two-species model with diffusion and advection, of the form

$$
\begin{align*}
 u_t &= \nabla \cdot (\mu \nabla u - \alpha u \nabla m) + u(m - u - v), \\
 v_t &= \nabla \cdot (\nu \nabla v - \beta v \nabla m) + v(m - u - v),
\end{align*}
$$

under some initial conditions and homogeneous total flux boundary conditions. Here u and v are population densities, $m = m(x)$ is the given local intrinsic growth rate, and α, β, μ, ν are constants. The coefficients μ, ν are nonnegative dispersal rates, and α, β control the magnitude of advection which simulates the movement upwards along the gradient of resources.

Depending on the relative magnitude of α, β, μ, ν, the authors determine that one of three possible behaviors can occur: coexistence, or extinction of one of the species, or intermediate dispersal rate. These results differ from the case without advection with $\alpha = \beta = 0$ in which the faster diffusing species is driven to extinction, as shown in [J. D. Dockery et al., J. Math. Biol. 37 (1998), no. 1, 61–83; MR1636644]. The paper extends results of X. Chen, R. Hambrock and Y. Lou [J. Math. Biol. 57 (2008), no. 3, 361–386; MR2411225].

{For additional information pertaining to this item see [X. Chen, K.-Y. Lam and Y. Lou, Discrete Contin. Dyn. Syst. 34 (2014), no. 11, 4989–4995; MR3223840].}

REVISED (September, 2014)

Current version of review. Go to earlier version. Małgorzata Peszyńska

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.