A group G is called maximally (or minimally) almost periodic if there exists for every element a distinct from the unit element e (or for no element a) an almost periodic function f on G such that $f(a) \neq f(e)$. The authors prove that the group of linear substitutions: $x = (ux + v)/(wx + z)$, with $uz - vw = 1$ and u, v, w, z rational, is minimally almost periodic; but its subgroup obtained by restricting the u, v, w, z to be integers is maximally almost periodic. The group of substitutions $x = ux + v$, with v and u ($\neq 0$) rational, is not of either extreme kind. While the positive statements are proved by direct construction, the negative statements follow from the lemma that an element a of G which is conjugate in G to some power $(a^n)^m$ of any of its powers a^n, $n > 0$, has the property that $f(a) = f(e)$ for every almost periodic function f on G.

E. R. van Kampen

© Copyright American Mathematical Society 2018