The author shows that satisfying the positivity, consistency, and variety conditions, which are sufficient to solve the truncated moment problems on planar curves of degree two, is no longer sufficient for curves of higher degree. He gives some partly algorithmic conditions, which are derived by using positive moment matrix extensions, leading to an explicit solution to the truncated moment problem on the curve $y = x^3$. Similar methods are used to solve truncated moment problems on curves of the form $y = g(x)$ or $yg(x) = 1$, where g is a polynomial with real coefficients, via degree-bounded weighted sums-of-squares representations of polynomials which are strictly positive on such curves.
20. L. Fialkow, Truncated complex moment problems with a $\overline{\tau}$ relation, Integral Equations and Operator Theory 45(2003), 405-435. MR1971746
35. J.L. Smul’jan, An operator Hellinger integral (Russian), Mat.Sb. 91(1959), 381-430. MR0121662
37. J. Stochel, Solving the truncated moment problem solves the moment problem, Glasgow J. Math. 43(2001), 335-341. MR1878578
40. V. Tchakaloff, Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sc. Math. 81(1957), 123-134. MR0094632

Note: This list, extracted from the PDF form of the original paper, may contain data conversion errors, almost all limited to the mathematical expressions.

© Copyright American Mathematical Society 2018