Let M be a regularly connected, finite, n-dimensional cellular polyhedron equipped with a metric r which is compatible with the topology of M, and μ be a regular, non-atomic measure on M which is zero on the set of non-regular points of M and positive on any open subset of the set of regular points of M. $H(M, \mu)$ denotes the group of μ-preserving homeomorphisms of M with the topology induced by the metric $\rho(S, T) = \operatorname{Max}_{x \in M} r(Sx, Tx)$. Following their earlier paper [Uspehi Mat. Nauk 22 (1967), no. 5 (137), MR0219697], the authors define cyclic approximation by periodic transformations (a.p.t.) with speed $f(n)$ as follows: an automorphism T of the Lebesgue space (M, μ) admits a cyclic a.p.t. with speed $f(n)$ if $0 \leq f(n) \searrow 0$ ($n \to \infty$) and there exist a sequence of measurable partitions ξ_n of M and of μ-preserving transformations T_n such that (A.1) $\xi_n \to \varepsilon$, the point partition ($n \to \infty$), i.e., for each measurable set E there exists a sequence of ξ_n-sets E_n so that $\mu(E_n \Delta E) \to 0$ ($n \to \infty$), (A.2) $T_n \xi_n = \xi_n$, (A.3) $\sum_{\xi_n} \mu(T \xi_n \Delta T_n \xi_n) < f(q_n)$, where q_n is the cardinality of ξ_n, (A.4) T_n cyclically permutes the elements of ξ_n.

Theorem A: automorphisms in $H(M, \mu)$ which admit a cyclic a.p.t. with some speed $f(n)$ form an everywhere dense G_δ in $H(M, \mu)$.

Theorem B: the set of automorphisms with continuous spectrum is an everywhere dense G_δ in $H(M, \mu)$. Corollary 1: the set of automorphisms with simple, singular and continuous spectrum is an everywhere dense G_δ in $H(M, \mu)$. Corollary 2: The ergodic homeomorphisms in $H(M, \mu)$ form an everywhere dense G_δ in $H(M, \mu)$.

S. M. Rudolfer

© Copyright American Mathematical Society 2018