In this paper the authors present an outline of the proofs of the following three results. The detailed proofs will appear in a forthcoming publication.

From the announcement:

“Theorem 1. Let μ be an ergodic invariant measure for a $C^{1+\theta}$ action α of $\mathbb{Z}^k, k \geq 2$, with $\theta > 0$, on a $(k+1)$-dimensional manifold, or for a locally free $C^{1+\theta}$ action α of $\mathbb{R}^k, k \geq 2$, also with $\theta > 0$, on a $(2k+1)$-dimensional manifold. Suppose that the Lyapunov exponents of μ are in general position and that at least one element in \mathbb{Z}^k has positive entropy with respect to μ. Then μ is absolutely continuous.

“Let \mathcal{M} be the set of ergodic, α-invariant measures that project to Lebesgue measure λ by the semiconjugacy: $h_*\nu = \lambda$.

“Theorem 2. For any action α of $\mathbb{Z}^j+l, j+l \geq 2$, on \mathbb{T}^{j+2l+1} by $C^{1+\theta}$ diffeomorphisms, $\theta > 0$, with maximal homotopy data, the set \mathcal{M} consists of a single absolutely continuous measure.

“Theorem 3. For any action α of \mathbb{Z}^k on \mathbb{T}^{k+1} with Cartan homotopy data, any Lyapunov Hölder (resp. Lyapunov smooth) cocycle is cohomologous to a constant cocycle via a Lyapunov Hölder (resp. Lyapunov smooth) transfer function.”

Mário Bessa

References

7. B. Kalinin, A. Katok and F. Rodriguez Hertz, Nonuniform measure rigidity,

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2018