On the ergodicity of cylindrical transformations given by the logarithm.

Given $\alpha \in [0, 1]$ and a measurable function $\varphi : T \to \mathbb{R}$, the cylindrical cascade is a map from $T \times \mathbb{R}$ to itself given by

$$S_{\alpha, \varphi}(x, y) = (x + \alpha, y + \varphi(x)).$$

In the present paper it is proved that for a set of full Lebesgue measure of $\alpha \in [0, 1]$, the cylindrical cascade $S_{\alpha, \varphi}$ is ergodic for every smooth function φ with a logarithmic singularity provided that the average of φ vanishes.

Special flows constructed above R_α and under $\varphi + c$, where $c \in \mathbb{R}$ is such that $\varphi + c > 0$, are closely related to $S_{\alpha, \varphi}$. For functions α with an asymmetric logarithmic singularity the above result provides the first examples of ergodic cascades $S_{\alpha, \varphi}$ with the corresponding special flows being mixing.

The paper contains a good introduction to the subject and a substantial list of references.

Maria E. Saprykina

References

12. M. Herman, Unpublished manuscript.

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2018