This paper investigates the “symplectic Khovanov homology” Kh_{symp} introduced by P. Seidel and I. Smith [Duke Math. J. 134 (2006), no. 3, 453–514; MR2254624]. Kh_{symp} is an invariant of knots in S^3; it is conjectured to be isomorphic to M. G. Khovanov’s Jones polynomial homology [Duke Math. J. 101 (2000), no. 3, 359–426; MR1740682]. Roughly speaking, it is constructed as follows. For each $n > 0$, Seidel and Smith described an open symplectic manifold Y_n, equipped with an action of the braid group Br_n, and containing a certain Lagrangian submanifold L_n. If the knot K is the closure of a braid $b \in \text{Br}_n$, its symplectic Floer homology is defined to be the Lagrangian Floer homology of the pair $(L_n, b(L_n))$ in Y_n.

The paper under review gives a very nice, concrete description of Y_n and L_n. The author shows that Y_n can be identified with an open subset of the Hilbert scheme $\text{Hilb}^n(S)$, where S is an affine surface in C^3. S contains n Lagrangian spheres $\Sigma_1, \ldots, \Sigma_n$, and the Lagrangian L_n can be replaced with the image of the product $\Sigma_1 \times \Sigma_2 \times \cdots \times \Sigma_n$ in $\text{Hilb}^n(S)$. Using this identification, the author explicitly describes the intersection points $L_n \cap b(L_n)$ in terms of a bridge diagram for K. He shows that they are in bijective correspondence with the intersections which appear in S. J. Bigelow’s “homological definition of the Jones polynomial” [in Invariants of knots and 3-manifolds (Kyoto, 2001), 29–41 (electronic), Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry, 2002; MR2002601], thus lending support to the conjecture that Kh_{symp} is isomorphic to Khovanov homology.

The definition of Kh_{symp} considered here is remarkably similar to that of Heegaard Floer homology [P. S. Ozsváth and Z. Szabó, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158; MR2113019]. The author pursues this relationship further, showing that there is a natural correspondence between the intersection points $L_n \cap b(L_n)$ the generators of the Heegaard Floer complex $\text{CF}(\Sigma(K)\# S^1 \times S^2)$, where $\Sigma(K)$ denotes the double cover of S^3 branched along K. This result is of particular interest in light of the work of Ozsváth and Szabó [Adv. Math. 194 (2005), no. 1, 1–33; MR2141852] which implies that there is a spectral sequence starting at $\text{HF}(\Sigma(Y)\# S^1 \times S^2; \mathbb{Z}/2)$ and converging to $\text{Kh}(K; \mathbb{Z}/2)$.

Jacob Andrew Rasmussen

32. ———, Symplectic geometry of the adjoint quotient, II, lecture, MSRI Workshop on Symplectic Geometry and Mathematical Physics, Mathematical Sciences and Research Institute, University of California, Berkeley, March 2004. 315, 316, 357
34. I. SMITH, Symplectic geometry of the adjoint quotient, I, lecture, MSRI Workshop on Symplectic Geometry and Mathematical Physics, Mathematical Sciences and Research Institute, University of California, Berkeley, March 2004. 315, 316, 357
36. A. WEINSTEIN, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. (2) 98 (1973), 377 – 410. MR 0331428 352 Department of Mathematics, Columbia University, 2990 Broadway, MC 4410, New York, New York 10027, USA; cm@math.columbia.edu

Note: This list, extracted from the PDF form of the original paper, may contain data conversion errors, almost all limited to the mathematical expressions.