In this paper measure-preserving transformations are studied by means of periodic transformations. Let T be a measure-preserving transformation on a Lebesgue space (M, μ) and $f(n) \to 0$ a sequence of positive numbers. We say that T has the property of approximation of first degree by periodic transformations (a.p.t.I) with speed $f(n)$, if for every n there is a partition of M consisting of q_n measurable sets $C_{n,i}$ ($i = 1, 2, \ldots, q_n$) and a measure-preserving transformation T_n such that (1) $\xi_n \to \varepsilon$ (that is, for every measurable set $A \subset M$ there is a set $A_n \in \xi_n$ such that $\mu(A_n \Delta A) \to 0$), (2) $T\xi_n = \xi_n$, and

$$\sum_{i=1}^{q_n} \mu(TC_{n,i} \Delta T_n C_{n,i}) < f(q_n).$$

We say that the approximation is of second degree (a.p.t.II) if condition 3 is replaced by

$$(3') \quad \sum_{i=1}^{q_n} \mu(TC_{n,i} \Delta T_n C_{n,i}) < f(p_n)$$

(where p_n is the order of T_n on the quotient space M/ξ_n) and the unitary operators U_{T_n} in $L^2(\mu)$ converge strongly to U_T. We say that the approximation is cyclic if each T_n is a permutation of ξ_n.

Here are some of the theorems proved by the authors. (1) If T has cyclic a.p.t. with speed θ/n and $\theta < 4$, then T is ergodic. (2) If, moreover, $\theta < \frac{1}{2}$, then U_T has simple spectrum. (3) If T has a.p.t.II with speed θ/n and $\theta < 2$, then T is not mixing. (4) If T has a.p.t.II then T has discrete spectrum and all proper numbers are roots of 1. (5) If T has finite entropy $h(T)$, then T has a.p.t. with speed $(2h(T) + \delta)/\lg n$, with arbitrary $\delta > 0$. (6) If T has a.p.t.I with speed θ/n, then $h(T) \leq \theta$; if, in addition, T is ergodic, then $h(T) \leq \theta/2$.

The first four theorems are extended for flows. Some category theorems are also proved and the skew product operators are studied.

The second part of the paper contains applications concerning the group property of the spectrum, square roots of transformations, flows on two-dimensional tori, and entropy of classical transformations.