A blow-up phenomenon in the Hamilton-Jacobi equation in an unbounded domain. (English summary)

Summary: “We construct an example of blow-up in a flow of min-plus linear operators arising as solution operators for the Hamilton-Jacobi equation

\[
\frac{\partial S}{\partial t} + \frac{|\Delta S|^{\alpha}}{\alpha} + U(x, t) = 0,
\]

where \(\alpha > 1\) and the potential \(U(x, t)\) is uniformly bounded together with its gradient. The construction is based on the fact that, for a suitable potential defined on a time interval of length \(T\), the absolute value of velocity for a Lagrangian minimizer can be as large as \(O((\log T)^{2-2/\alpha})\). We also show that this growth estimate can not be improved. Implications of this example for existence of global generalised solutions to randomly forced Hamilton-Jacobi or Burger equations are discussed.”

{For the collection containing this paper see MR2145152}

Ramajayam Sahadevan

References

10. Vassili N. Kolokoltsov and Victor P. Maslov, *Idempotent analysis and its appli-

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.