Let (M, μ) be a Lebesgue space, T an automorphism, and $f(n)$ a sequence of positive reals tending to zero. T is said to allow approximation by periodic transformations with speed $f(n)$ if there is a sequence of finite partitions $\zeta_n = \{C_n^k\}$ $(1 \leq k \leq q_n)$, $\zeta_n \to \varepsilon$ (the trivial partition), and periodic automorphisms S_n of (M, μ) of period q_n, with $S_n\zeta_n = \zeta_n$, such that $\sum_{k=1}^{q_n} \mu(TC_n^k \Delta S_nC_n^k) < f(q_n)$. The first paper is concerned with speed $o(f(q_n))$. If $f(q_n) = 1/\ln q_n$, then T is ergodic but not mixing, $U_{Tq_n} \to E$ strongly, and the maximal spectral type of U_T is singular. These considerations are applied to the construction of ergodic automorphisms and flows. One such construction is as follows. Let (M, μ) be the circle with Lebesgue measure. Let $M' = M \times \mathbb{Z}_2$, $T'(x, j) = (x + \alpha, n(x)j)$, where α is irrational, $n(x) = -1$ on $[0, \gamma)$ and $n(x) = 1$ on $(\gamma, 1]$. If α and γ satisfy certain conditions related to approximation by rationals, and H_{-1} is the subspace of $L^2(M')$ defined by $f(x, 1) = -f(x, -1)$, then $U_{T'}$ has continuous spectrum on H_{-1}. If σ is the maximal spectral type of $U_{T'}$, then $\sigma \perp \sigma^* \sigma$.

In the second paper, it is shown that any automorphism may be approximated with speed $a_n/\ln n$, where $a_1 \leq a_2 \leq \cdots$ and $a_n \to \infty$. If $c(T) = \inf \{c: T$ allows approximation with speed $c/\ln n\}$, then, if T is ergodic, $h(T) \leq c(T) \leq 2h(T)$. If T is ergodic, it can be approximated with speed $o(1/\ln n)$ if and only if $h(T) = 0$.

{The first article has appeared in English translation [Soviet Math. Dokl. 7 (1966), 1638–1641].}