The authors study randomly forced Burgers and Hamilton-Jacobi equations in the full d-dimensional space. Technical assumptions on the forcing potentials allow them to establish that fluid particles after a certain time concentrate in a compact subset of the space. Then by controlling fluid velocities they establish the existence and uniqueness of the stationary distribution. This interesting paper concludes with comments about possible extensions of the theory as well as some open problems.

Alp O. Eden

References

16. Fathi A and Maderna E 2000 Weak KAM theorem on non-compact manifolds
 Preprint MR2346451
17. Frisch U, Bec J and Villone B 2001 Singularities and the distribution of density in
 the Burgers/adhesion model Physica D 152/153 620–35 MR1837931
 Fluids A 10 2859–66 MR1650782
 4908–14
21. Kifer Yu 1997 The Burgers equation with a random force and a general model for
 directed polymers in random environments Prob. Theory Related Fields 108 29–65
 MR1452549
 10 537–66 MR0093653
 in Math. vol 69 (Boston: Pitman Advanced Publishing Program) MR0667669
 Mat. Nauk 12 3–73 MR0094541

 Note: This list reflects references listed in the original paper as
 accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2018