In this paper, recent progress in the dynamical systems approach to Burgers turbulence is discussed. Most of the results are obtained for the d-dimensional Burgers equation

$$\partial_t u + (u \cdot \nabla) u = \nu \Delta u + f(y, t), \quad y \in \mathbb{R}^d,$$

where the external force f has either the form

$$f(y, t) = -\nabla F(y, t), \quad F(y, t) = \sum_{k=1}^{N} F_k(y) B_k(t),$$

where F_k are smooth potentials and B_k are independent white noises, or the form

$$f(y, t) = -\nabla F(y, t), \quad F(y, t) = \sum_{j \in \mathbb{Z}} F_j(y) \delta(t - t_j)$$

{For the collection containing this paper see MR1905309}

Bohdan Maslowski