If \(\mathcal{H} \) is a complex infinite-dimensional separable Hilbert space, then let \(\mathcal{L}(H) \) stand for the algebra of bounded linear operators on \(\mathcal{H} \). An operator \(T \) in \(\mathcal{L}(H) \) is said to be subnormal if there exist a Hilbert space \(\mathcal{K} \) containing \(\mathcal{H} \) and a normal operator \(N \) in \(\mathcal{L}(K) \) such that \(\mathcal{H} \) is invariant for \(N \) and \(T \) is the restriction of \(N \) to \(\mathcal{H} \). Letting \([A, B]\) stand for the commutator \(AB - BA \) of two operators \(A, B \) in \(\mathcal{L}(H) \), one says that \(T \) in \(\mathcal{L}(H) \) is \(k \)-hyponormal if the \(k \times k \) operator matrix having the \((i, j)\)th entry \([T^i, T^j]\) is positive. Given a bounded sequence \(\{\alpha_n\}_{n \geq 0} \) of positive reals, one can define a weighted shift operator \(W_\alpha \) (with the weight sequence \(\{\alpha_n\}_{n \geq 0} \) via the relations \(W_\alpha e_n = \alpha_n e_{n+1} \), where \(\{e_n\}_{n \geq 0} \) is an orthonormal basis for \(\mathcal{H} \). Given a finite ordered \((k + 1)\)-tuple \(\alpha = (\alpha_0, \ldots, \alpha_k) \) of positive reals, one says that a sequence \(\{\hat{\alpha}_n\}_{n \geq 0} \) of positive reals is recursively generated by \(\alpha \) if \(\hat{\alpha}_j = \alpha_j \) for \(0 \leq j \leq k \) and there exist \(r \geq 1 \) and reals \(\phi_0, \ldots, \phi_{r-1} \) such that \(\gamma_{n+r} = \phi_0 \gamma_0 + \cdots + \phi_{r-1} \gamma_{n+r-1} \) for all \(n \geq 0 \), where \(\gamma_0 = 1 \) and \(\gamma_n = \gamma_{n-1} \hat{\alpha}_{n-1}^2 \) \((n > 1)\); in such a case \(W_\hat{\alpha} \) itself is said to be recursively generated (by \(\alpha \)). An \(n \)-step extension of a weighted shift operator \(W_\hat{\alpha} \) recursively generated by \(\alpha \) is a weighted shift operator that has as its weight sequence the augmented sequence obtained from \(\{\hat{\alpha}_n\}_{n \geq 0} \) by inserting \(n \) positive reals before \(\hat{\alpha}_0 \). The so-called “rank-1 perturbation” of a recursively generated weighted shift operator is obtained by changing one term of the associated weight sequence; it is not difficult to see that, for any rank-1 perturbation of a recursively generated weighted shift operator, the associated weight sequence is an \(n \)-step extension of a recursively generated sequence for some \(n \geq 0 \).

The authors establish a few results relating the requirement of subnormality for an \(n \)-step extension of a recursively generated weighted shift operator (and, in particular, of rank-1 perturbation of a recursively generated weighted shift operator) to the requirement of \(k \)-hyponormality for such an operator. In particular, they show that a 1-step extension of a weighted shift operator recursively generated by a \((k + 1)\)-tuple \(\alpha \) of positive reals is subnormal if and only if it is \(((k + 1)/2 + 1)\)-hyponormal (with \([m] \) denoting the integral part of a positive integer \(m \)), and that an \(n \)-step extension, with \(n > 1 \), is subnormal if and only if it is \(((k + 1)/2 + 2)\)-hyponormal.

References

Note: This list, extracted from the PDF form of the original paper, may contain data conversion errors, almost all limited to the mathematical expressions.

© Copyright American Mathematical Society 2018