Let G be a compact connected Lie group and K a closed connected subgroup. Denote by X a symplectic manifold on which G acts in a Hamiltonian fashion. Let $p: X \to \mathfrak{g}^*$, where \mathfrak{g} is the Lie algebra of G, be the moment mapping. The functions of type $h \circ p$, for $h: \mathfrak{g}^* \to \mathbb{R}$, are called collective. Such $h \circ p$ are integrals for any flow on X with G-invariant Hamiltonian (Noether’s theorem). A completely integrable system consisting of $(\dim X)/2$ independent real-analytic functions of this type commuting with respect to the Poisson bracket is called a collective completely integrable system. For example, all symmetric spaces G/K admit a collective completely integrable system on the phase space $T^*(G/K)$. Moreover, on $T^*(G/K)$ there exists a collective completely integrable system if and only if the subgroup K of G is spherical. In this case, we call (G, K) a spherical pair.

Let N_{max} be the maximal number of independent real-analytic commuting functions on $X = T^*(G/K)$ of type $h \circ p$. If $N_{\text{max}} = (\dim X/2) - 1$ we call the corresponding system of functions an almost collective completely integrable system and the subgroup K an almost spherical subgroup of G. In this case, the pair (G, K) is called an almost spherical pair.

In this paper, the authors enumerate all almost spherical pairs (G, K) for a simple compact Lie group G.

{For the collection containing this paper see MR1764467}

Zi-Xin Hou

© Copyright American Mathematical Society 2018