A C^1 curve $\{x(\tau), -\infty < \tau \leq t_0\}$ is called a minimizer if, for any finite interval $[t_1, t_2]$, $-\infty < t_1 < t_2 < t_0$, and any C^1 curve $\{\overline{x}(\tau), -\infty < \tau \leq t_0\}$ that coincides with $x(\tau)$ outside the interval (t_1, t_2), the inequality $A_{t_1,t_2}(x(\tau)) \geq A_{t_1,t_2}(\overline{x}(\tau))$ holds, where A is an action functional minimizing the trajectories of a two-dimensional Hamiltonian system with a random potential expressed in terms of independent standard Wiener processes. The authors state without proof some geometric properties of such minimizers as well as a theorem of Hadamard-Perron type on the existence of local unstable manifolds related to minimizers.

J. S. Joel