Katok, A. [Katok, Anatole B.] (1-PAS); Spatzier, R. J. [Spatzier, Ralf J.] (1-MI)
Nonstationary normal forms and rigidity of group actions. (English summary)

The authors announce new results on C^∞-rigidity of homogeneous Anosov actions of higher rank. First they develop a “nonstationary” generalization of the classical theory of normal forms for local contractions. More specifically, let X be a compact metric space, V a vector bundle over X, $f: X \to X$ a homeomorphism, and $F: V \to V$ a continuous extension of f which is smooth along the fibers. Suppose that F is a contraction with narrow band spectrum. Then F is equivalent to a polynomial map of subresonance type. Moreover, if G is a continuous, fiberwise smooth extension of a homeomorphism $g: X \to X$, and G commutes with F, then G is also a polynomial map of subresonance type. This shows that a local action of an abelian group by extensions which contain a contraction with narrow band spectrum can be simultaneously reduced to a normal form.

Now let M be a compact manifold, and ρ a C^∞ action of a finitely generated discrete group Γ on M. Then ρ is said to be C^∞ locally rigid if any C^∞ action $\tilde{\rho}$ of Γ on M that is C^1 close to ρ on a set of generators is C^∞ conjugate to ρ. The action is Anosov if $\rho(\Gamma)$ contains an Anosov element. The result is as follows. Any algebraic Anosov action of \mathbb{Z}^k, $k \geq 2$, on an infranilmanifold is C^∞ locally rigid provided all nontrivial elements of \mathbb{Z}^k are ergodic and semisimple. The semisimplicity condition is technical and hopefully may be omitted. This extends the previous result of the authors [Inst. Hautes Études Sci. Publ. Math. No. 79 (1994), 131–156; MR1307298] for Anosov actions of \mathbb{Z}^k on tori, and is a corollary of a general result for Anosov \mathbb{R}^k-actions based on the theory of normal forms.

From this the authors deduce the following. Let Γ be an irreducible lattice in a semisimple Lie group G with no real rank 1 factors. Then any algebraic Anosov Γ-action on a nilmanifold is C^∞ locally rigid. This uses Zimmer’s cocycle superrigidity theorem and generalizes an earlier result of Katok, J. Lewis and R. Zimmer [Topology 35 (1996), no. 1, 27–38; MR1367273].

Finally, let Γ be a cocompact irreducible lattice in a semisimple Lie group G with finite center, of real rank at least 2, and without compact factors. Let P be a parabolic subgroup of G. Then the left action of Γ on G/P is C^∞ locally rigid. This kind of projective action for $G = \text{SL}(2, \mathbb{R})$ was first studied by É. Ghys [Inst. Hautes Études Sci. Publ. Math. No. 78 (1993), 163–185 (1994); MR1259430].

© Copyright American Mathematical Society 2018