Self-avoiding random walks in five or more dimensions: an approach using polymer expansions. (Russian)

The self-avoiding random walk in the weak sense, $w_\epsilon(T)$, differs from the simple symmetric random walk on the d-dimensional cubic lattice by giving small statistical weights tending to zero with $\epsilon \to 1$ to the trajectories intersecting themselves: $\epsilon = 0$ corresponds to the standard random walk, while $\epsilon = 1$ corresponds to the self-avoiding random walk in the strong sense. The effective small parameter is ϵ/d. The following theorem is proved: If $d \geq 5$ and ϵ/d is sufficiently small then the mean square displacement of $w_\epsilon(T)$ shows diffusive behaviour and obeys the central limit theorem. The central limit theorem is formulated as follows: When diffusive rescaling is used, the characteristic function of the displacement tends to that of the d-dimensional standard Gaussian one. The proof is simpler and more natural than that of S. E. Golowich and J. Z. Imbrie [Ann. Physics 217 (1992), no. 1, 142–169; MR1173280]. It is based on statistical mechanical methods: polymer expansion for a special one-dimensional contour model (lace expansion).

András Krámli

© Copyright American Mathematical Society 2018