Exemples de flots hamiltoniens dont aucune perturbation en topologie C^∞ n’a d’orbites périodiques sur un ouvert de surfaces d’égales. (French. English summary) [[Examples of Hamiltonian flows such that no C^∞ perturbation has a periodic orbit on an open set of energy surfaces]]

Summary: “We propose to prove that the closing lemma is false for Hamiltonian vector fields on the torus T^{2n+2}, $n \geq 1$, in the C^{k_0+1} topology, $k_0 > 2n + 1$, and for almost every constant symplectic form. There exist $H_0 \in C^\infty(T^{2n+2})$ and, for almost every constant symplectic form w_A on T^{2n+2}, an open neighbourhood U of H_0 in $C^{k_0+1}(T^{2n+2})$ such that, for $H \in U$, one has $[-\frac{1}{2}, \frac{1}{2}] \subset H(T^{2n+2})$, any $c \in [-\frac{1}{2}, \frac{1}{2}]$ is a regular value of H, and the Hamiltonian flow of H for w_A is C^1 conjugate on each component of $H^{-1}(c)$ to a linear Diophantine flow on T^{2n+2}. The proof considers similar examples to those found by E. Zehnder and uses the local theorem of Arnol’d and Moser of conjugacy of diffeomorphisms of tori to Diophantine translations.”

Michel Willem