In a recent paper [Ann. Mat. Pura Appl. (4) 159 (1991), 229–254], the author introduced
the following new definition: “Let X be a q-complete space, $\dim X = n < +\infty$. An open
subspace Y of X is said to be relatively q-complete in X if for each compact subset $K \subseteq Y$,
there is a C^∞ strongly q-convex exhaustive function φ_K on X such that $K \subseteq
\{x \in X : \varphi_K(x) < 0\} \subseteq Y$.” Under the above conditions, he proved that Y is a q-Runge
domain in X (that is, the natural homomorphism $H^q(X, \Omega^p) \rightarrow H^q(Y, \Omega^p)$ has dense
image for every $p = 0, 1, \cdots, n$, where Ω^p denotes the coherent sheaf on X of singular
Moreover, in the same paper it was proved that one has $H_k(X, Y; G) = 0$ for $k > n + q$ and any abelian group G, and this new notion was used
to prove several results about homology and cohomology with compact supports of
q-convex spaces, avoiding the use of stratified Morse theory.

Note that Y is an open 0-relatively 0-complete domain in the Stein space X if and
only if Y is a Runge domain in X.

In the present paper this new notion is examined with regard to several standard
constructions useful in the theory of complex spaces. In particular we recall the following
property [see also V. Villani, ibid. (3) 20 (1966), 15–23; MR0201678; V. Ancona, Ann.
Univ. Ferrara Sez. VII (N.S.) 20 (1975), 49–52; MR0387661]: Let X be a q-complete
space and let $E \rightarrow X$ be a holomorphic vector bundle on X. It is known that E is a q-
complete space. For each relatively q-complete open subspace Y in X, $E|_Y$ is a relatively
q-complete open subspace of E. Finally, we also mention the following result. Let X, Y
be complex spaces and let $f : X \rightarrow Y$ be a finite holomorphic map. Let us assume that Y
is a q-complete space and that Z is an open relatively q-complete subspace in Y. Then
$f^{-1}(Z)$ is an open relatively q-complete subspace in X.

 Salvatore Coen

© Copyright American Mathematical Society 2018