Differentiability of entropy for Anosov and geodesic flows.

The paper contains theorems due to various combinations of the authors. The topological entropy of a flow \(\{ \varphi^t \} \) is defined to be the topological entropy, \(h_{\text{top}}(\varphi^1) \), of the time-one map. Consider an Anosov flow \(\{ \varphi^t \} \) of a compact manifold \(M \) and consider a family \(\{ \varphi^t_\lambda \} \) of perturbations of it \((\varphi^t_0 = \varphi^t)\). If all the flows are \(C^\omega \) (real analytic) and \(\lambda \to \{ \varphi^t_\lambda \} \) is \(C^\omega \), then \(\lambda \to h_{\text{top}}(\varphi^1_\lambda) \) is \(C^\omega \). If all the flows are \(C^{k+1} \) and \(\lambda \to \{ \varphi^t_\lambda \} \) is \(C^{k+1} \) and \(1 \leq k \leq \infty \), then \(\lambda \to h_{\text{top}}(\varphi^1_\lambda) \) is \(C^{k} \). However, when the flows are \(C^1 \) and \(\lambda \to \{ \varphi^t_\lambda \} \) is \(C^1 \), then \(\lambda \to h_{\text{top}}(\varphi^1_\lambda) \) is \(C^{1} \). In this last case

\[
\left. \frac{\partial h_{\text{top}}(\varphi^1_\lambda)}{\partial \lambda} \right|_{\lambda=0} = h_{\text{top}}(\varphi^1) \left[\int_M \frac{\partial \alpha_\lambda(p)}{\partial \lambda} \bigg|_{\lambda=0} d\mu_0(p) \right],
\]

where \(\mu_0 \) is the unique measure of maximal entropy for \(\{ \varphi^t \} \) and \(\alpha_\lambda(p) \) denotes a function which gives the time reparametrization in structural stability when integrated along orbits of \(\{ \varphi^t \} \).

In the case of geodesic flows one can obtain another formula. If \(g \) is a Riemannian metric of negative sectional curvature on \(M \) and if \(\lambda \to g_\lambda \) is a \(C^2 \) map from \((-\epsilon, \epsilon)\) into the space of \(C^2 \) metrics on \(M \) with \(g_0 = g \), then if \(\{ \varphi^t_\lambda \} \) denotes the geodesic flow corresponding to \(g_\lambda \) we get that \(\lambda \to h_{\text{top}}(\varphi^1_\lambda) \) is \(C^{1} \) and

\[
\left. \frac{\partial h_{\text{top}}(\varphi^1_\lambda)}{\partial \lambda} \right|_{\lambda=0} = -\frac{h_{\text{top}}(\varphi^1)}{2} \int_{SM_0} \frac{\partial g_\lambda(v,v)}{\partial \lambda} \bigg|_{\lambda=0} d\mu_0(v),
\]

where \(SM_0 \) is the unit tangent bundle for \(g \) and \(\mu_0 \) is the unique measure of maximal entropy for \(\{ \varphi^t_0 \} \). If \(R_1(M^2) \) is the submanifold of negatively curved metrics on a compact surface \(M^2 \) with area equal to 1, then \(h_{\text{top}}: R_1(M^2) \to \mathbb{R} \) has a critical point at \(g \) if and only if \(g \) is a metric of constant negative curvature.

Some results are also given for metric entropy. All proofs are given elsewhere.

Peter Walters

© Copyright American Mathematical Society 2018